
1

Development Standards & Practices Used

For software development:

● Scrum methodology

○ https://scrumguides.org/scrum-guide.html

○ https://www.scrum.org/resources/professional-scrum-developer-g

lossary

● IEEE 610.12, Standard Glossary of Software Engineering Terminology

● IEEE 1540: Software Risk Management

For software testing:

● IEEE 1012: A standard for Software Verification and Validation.

● IEEE 1061: A methodology for establishing quality requirements

● IEEE 1008: Unit testing standard

For working with coordinate systems:

● GPS Coordinates will use the UTM or WGS84 format for representing

geolocated points

● Mercator projection and Map matching have no agreed-upon standards,

so we will follow conventional projection formulas

Summary of Requirements

● Set of trucks and delivery requests

● For each truck

○ Initial location

○ Delivery location (target)

○ Goods being transported

○ Capacity of the truck (weight of goods that can be carried)

○ Load (amount of goods being carried/transported on the truck)

● Generate route for each truck

● Based on the route: Estimate truck location at any given point of time

● Cater to the dynamic updates:

○ New pickup/delivery request

2

https://scrumguides.org/scrum-guide.html
https://www.scrum.org/resources/professional-scrum-developer-glossary
https://www.scrum.org/resources/professional-scrum-developer-glossary

○ Broken truck at any given time

● Reassign the rest of the trucks from the fleet as a result of the dynamic

updates

● UI requirements

○ Dispatcher (Desktop) UI

○ Mobile app for drivers of trucks

○ Intuitive for both

● Notifications to both drivers and dispatchers

○ New route

○ Customer updates if a delivery is delayed

● Constraints

○ Response time (Seconds to a minute of response time for dynamic

updates)

○ Assuming the availability of road network maps and other traffic

distribution data (traffic density) -> Needed for any assignment

(both initial and dynamic)

○ Economics:

■ Minimize delivery delay as a result of a dynamic update

■ Minimize idle time of trucks

○ Resource requirements

■ Need a server to be running constantly to host the database

and requests as well as running the assignment algorithm

■ Android mobile device

■ Visualization tools/frameworks

Applicable Courses from Iowa State University Curriculum
● COMS 228

● SE 319

● COMS 309

● SE 339

● COMS 311

● SE 329

● COMS 363

New Skills/Knowledge acquired that was not taught in courses
● React

● Mapbox

3

Table of Contents
1 Team 7

1.1 TEAM MEMBERS 7

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT 7

1.3 SKILL SETS COVERED BY THE TEAM 7

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM 8

1.5 INITIAL PROJECT MANAGEMENT ROLES 8

2 Introduction 9

2.1 PROBLEM STATEMENT 9

2.2 REQUIREMENTS & CONSTRAINTS 9

2.3 ENGINEERING STANDARDS 10

2.4 INTENDED USERS AND USES 10

3 Project Plan 17

3.1 Project Management/Tracking Procedures 17

3.2 Task Decomposition 18

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 18

3.4 Project Timeline/Schedule 20

3.5 Risks And Risk Management/Mitigation 22

3.6 Personnel Effort Requirements 23

3.7 Other Resource Requirements 24

4 Design 24

4.1 Design Context 24

4.1.1 Broader Context 24

4.1.2 User Needs 25

4.1.3 Prior Work/Solutions 25

4.1.4 Technical Complexity 26

4.2 Design Exploration 27

4.2.1 Design Decisions 27

4.2.2 Ideation 27

4.2.3 Decision-Making and Trade-Off 27

4.3 Proposed Design 28

4

4.3.1 Design Visual and Description 28

4.3.2 Functionality 30

4.3.3 Areas of Concern and Development 33

4.4 Technology Considerations 34

4.5 Design Analysis 35

4.6 Design Plan 36

5 Testing 36

5.1 Unit Testing 36

5.2 Interface Testing 37

5.3 Integration Testing 39

5.4 System Testing 39

5.5 Regression Testing 39

5.6 Acceptance Testing 40

5.7 Security Testing (if applicable) 40

5.8 Results 40

6 Implementation 42

7 Professionalism 44

7.1 Areas of Responsibility 45

7.2 Project Specific Professional Responsibility Areas 47

7.3 Most Applicable Professional Responsibility Area 48

8 Closing Material 49

8.1 Discussion 49

8.2 Conclusion 49

8.3 References 50

8.4 Appendices 50

8.4.1 Important Resources 50

8.4.2 Team Contract 50

5

List of figures/tables/symbols/definitions

Figure 2.4.1. Single Destination Use Case 11

Figure 2.4.2. Multiple Destinations Use Case 12

Figure 2.4.3. Multiple Destinations with Multiple Routes Use Case 13

Figure 2.4.4. Route Recalculation Use Case 14

Figure 2.4.5. Multiple Warehouses with Multiple Routes and
Multiple Destinations Use Case

15

Figure 2.4.6. Truck Reallocation on Truck Break Down 16

Table 3.2.1. Task Decomposition 18

Figure 3.4.1. Gantt Chart 21

Table 3.6.1. Task-Effort Decomposition 23

Table 4.1.1.1. Responsibility Considerations 24

Figure 4.3.1.1. System Architecture 28

Figure 4.3.2.1. Initial Routes Calculated by Algorithm 31

Figure 4.3.2.2. Pink Truck Breaks Down 32

Figure 4.3.2.3. Load Divided Between Blue and Orange Trucks.
Routes Recalculated Accordingly.

33

Figure 5.8.1: Unit testing 41

Figure 5.8.2: Testing plan 41

Table 7.1.1. ACM Areas of Responsibility 45

Table 7.1.2. Differences in ACM and NSPE code of ethics 46

6

1 Team

1.1 TEAM MEMBERS

Joshua Heroldt

Bernard Fay

Nolan Slimp

Asma Gesalla

Matthew Medley

Indrajeet Roy

Siddharth Rana

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT

1. Database skills
2. API skills
3. Web development skills
4. Mobile application development skills
5. Inter-process communication
6. Program efficiency skills

Enumerating more on the specific requirements for this project

● Develop a matching algorithm that either falls under the classical or evolutionary approach
to solving a vehicle routing problem

● Ability to work with front end applications to develop a web application as well as a mobile
application

● Database skills that allow for multiple tables to be modified and accessed in real time
● API skills in order to get real-time traffic data from a city in the United States
● Some manor of connection between the applications and the developed algorithm in order

to issue real-time notifications to multiple parties that might be using the app
● Making the UI intuitive for multiple types of users

1.3 SKILL SETS COVERED BY THE TEAM

1. Database skills
a. Nolan Slimp
b. Siddharth Rana
c. Matthew Medley
d. Bernard Fay

2. API skills
a. Joshua Heroldt

7

b. Siddharth Rana
c. Matthew Medley
d. Bernard Fay

3. Web development skills
a. Joshua Heroldt
b. Nolan Slimp
c. Matthew Medley

4. Mobile application development skills
a. Joshua Heroldt

5. Inter-process communication
a. Indrajeet Roy
b. Asma Gasella
c. Bernard Fay

6. Program efficiency skills
a. Joshua Heroldt
b. Bernard Fay

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

The team will be using a scrum management style that is an offshoot of the typical agile
methodology. This is because we want to emphasize the importance of regular communication with
the team in order to make sure everyone knows the status and problems related to the project. This
way if any team member is stuck it will allow for an easy way for other group members to offer
advice and help to anyone if their skill sets match the problem currently being faced by the team.
This will work especially well for our group seeing how many different subteams will need to be
created to work on the various different aspects of the project.

1.5 INITIAL PROJECT MANAGEMENT ROLES

● Joshua Heroldt
○ Team organization
○ Client interaction

● Bernard Fay
○ Database management
○ Meeting Scribe

● Nolan Slimp
○ Scrum Master

● Asma Gesalla
○ Backend documentor

● Matthew Medley
○ Team Website Manager
○ Frontend architecture design

● Indrajeet Roy
○ Frontend documentor

● Siddharth Rana
○ Individual component design

8

2 Introduction

2.1 PROBLEM STATEMENT

Develop a system that will enable different classes of users to participate in route assignments for
delivery trucks. The fundamental algorithm question we are trying to solve is how to assign a truck
from a given fleet to a new request, or how to re-assign truck(s) to respond to dynamic changes in
traffic or if a truck breaks down. The rest of the tasks will involve implementing the algorithmic
solutions, the user interface, and integrating map data with request data to generate routes.

2.2 REQUIREMENTS & CONSTRAINTS

In the system, there will be a set of trucks and delivery requests that base all of our constraints.
Each truck will have an initial location, delivery location, goods being transported, capacity of the
truck, and current load. Then, the system must generate the optimal route for each truck. Based on
the route, the user must be able to estimate the location of the truck at any time, and know its
remaining distance to a delivery location. The route must be able to update to any new pickup
location and delivery requests (constraint). It also needs to update if any truck breaks down on
route at any given time (constraint). Based on these two constraints, dynamic updates will be
made to reassign the rest of the trucks from a given fleet. These dynamic updates must be made in
less than a minute response time (constraint). The user interface will consist of a dispatcher web
application and a mobile application for the drivers of each truck. Notifications will be sent to both
the drivers and dispatchers when given a new route or customer updates for delayed deliveries. The
system will also be efficient, and must minimize route time for dynamic updates, idle time of a
truck, and initial assignments (constraint). This project assumes we have access to road network
maps and other traffic information; we will rely on this data and it is necessary to assign trucks
(constraint).

● Set of trucks and delivery requests
● For each truck

○ Initial location
○ Delivery location (target)
○ Goods being transported
○ Capacity of the truck (weight of goods that can be carried)
○ Load (amount of goods being carried/transported on the truck)

● Generate route for each truck
● Based on the route: Estimate the location of truck at any given point of time
● Cater to the dynamic updates:

○ New pickup/delivery request
○ Broken truck at any given time

● Reassign the rest of the trucks from the fleet as a result of the dynamic updates
● UI requirements

9

○ Dispatcher (Desktop) UI
○ Mobile app for drivers of trucks
○ Intuitive for both

● Notifications to both drivers and dispatchers
○ New route
○ Customer updates if a delivery is delayed

● Constraints
○ Response time (Seconds to a minute of response time for dynamic updates)
○ Assuming the availability of road network maps and other traffic distribution data

(traffic density) -> Needed for any assignment (both initial and dynamic)
○ Economics:

■ Minimize delivery delay as a result of a dynamic update
■ Minimize idle time of trucks

○ Resource requirements
■ Need a server to be running constantly to host the database and requests

as well as running the assignment algorithm
■ Android mobile device
■ Visualization tools/frameworks

2.3 ENGINEERING STANDARDS

For software development:

● Scrum methodology
○ https://scrumguides.org/scrum-guide.html
○ https://www.scrum.org/resources/professional-scrum-developer-glossary

● IEEE 610.12, Standard Glossary of Software Engineering Terminology
● IEEE 1540: Software Risk Management

For software testing:

● IEEE 1012: A standard for Software Verification and Validation.
● IEEE 1061: A methodology for establishing quality requirements
● IEEE 1008: Unit testing standard

For working with coordinate systems:

● GPS Coordinates will use the UTM or WGS84 format for representing geolocated points
● Mercator projection and Map matching have no agreed-upon standards, so we will follow

conventional projection formulas

2.4 INTENDED USERS AND USES

The primary beneficiaries of our project are customers, truck dispatchers, and truck drivers. While
not directly used by the customers, the project will have the general impact of ensuring timely
deliveries. The project will be more directly used by dispatchers as it will aid them in deciding

10

https://scrumguides.org/scrum-guide.html
https://www.scrum.org/resources/professional-scrum-developer-glossary

initial routes for trucks as well as making decisions and adjustments in the case of changing
circumstances (traffic, new orders, truck breakdowns, etc.). This will benefit the dispatcher by
reducing the stress of unpredictable circumstances and having to make quick decisions. Lastly, the
project will be used by truck drivers to receive their assignments and any changes that occur
throughout the day due to traffic, new orders, breakdowns, etc. This will benefit truck drivers by
reducing the amount of time they spend making deliveries by optimizing routes, reducing waiting
times for updated assignments, and minimizing the amount of time spent making deliveries.

POTENTIAL APPLICATION USE CASES

1. BASE USE CASE

The base use case is formulated on the assumptions that all 3 actors (Truck drivers, Truck
dispatchers and customers) are involved, the order route is between the cargo origin point
and a single destination point (in comparison to multiple destination points) and external
factors such as traffic, vehicle malfunction are not present.

A customer's input order is allocated to a dispatcher via the allocation algorithm and the
dispatcher then relays the order to a truck driver. Communication between the dispatcher
and the truck driver is facilitated by the web and mobile platforms
communication/notification system. The truck driver's route from the order origin pick up
point to the destination point will be determined by the routing algorithm. Post order
delivery to destination, the truck driver notifies the dispatcher, who subsequently notifies
the customer that the order has been successfully delivered to the destination point, as per
the customer's order input.

Figure 2.4.1. Single Destination Use Case

Given warehouse W and order 1, the algorithm will generate the depicted route and present
it to the dispatcher. The dispatcher will then inform the truck driver of the order and the
route to be taken through the web application. The truck driver will receive this
information through the mobile application.

2. MULTIPLE DESTINATION USE CASE

The multiple destination use case is formulated on the assumptions that all 3 actors (Truck
drivers, Truck dispatchers and customers) are involved, the order route is between the
cargo origin point and multiple destination points and external factors such as traffic,
vehicle malfunction are not present.

11

A customer's input order is allocated to a dispatcher via the allocation algorithm and the
dispatcher then relays the order to a truck driver. Communication between the dispatcher
and the truck driver is facilitated by the web and mobile platforms
communication/notification service. The truck driver's route from the warehouse to each of
the delivery locations will be determined by the routing algorithm. Post order delivery to
the final destination point, the truck driver notifies the dispatcher, which subsequently
notifies the customer that the order has been successfully delivered to the destination
point, as per the customer's order input.

Figure 2.4.2. Multiple Destinations Use Case

Given warehouse W, orders 1 and 2 at the locations depicted, and one truck, the algorithm
would output the above route given the locations of the orders. The dispatcher will then
inform the truck driver of the route to be taken through the web application. The truck
driver will receive this information through the mobile application.

3. MULTIPLE DESTINATION WITH MULTIPLE ROUTES USE CASE

The multiple destination use case is formulated on the assumptions that all 3 actors (Truck
drivers, Truck dispatchers and customers) are involved, the order route is between the
cargo origin point and multiple destination points and external factors such as traffic,
vehicle malfunction are not present.

A customer's input order is allocated to a dispatcher via the allocation algorithm and the
dispatcher then relays the order to a truck driver. Communication between the dispatcher
and the truck driver is facilitated by the web and mobile platforms
communication/notification service. The truck driver's route from the warehouse to each of
the delivery locations will be determined by the routing algorithm. Post order delivery to

12

the final destination point, the truck driver notifies the dispatcher, which subsequently
notifies the customer that the order has been successfully delivered to the destination
point, as per the customer's order input.

Figure 2.4.3. Multiple Destinations with Multiple Routes Use Case

Given warehouse W, orders 1, 2, 3, 4, 5, and 6 at the locations depicted, and three trucks,
the algorithm would output three routes, green, blue, and pink, given the proximity of the
orders, expected delivery times, and load balancing. Each of the three trucks would be
assigned to one of the routes for the day, starting and ending at the warehouse.

4. ROUTE RECALCULATION USE CASE

The route reallocation use case is formulated on the assumptions that all 3 actors (Truck
drivers, Truck dispatchers and customers) are involved, the order route is between the
cargo origin point and destination points and external route blocking or route inefficiency
factors such as traffic, road construction, route obstacles are present.

13

Figure 2.4.4. Route Recalculation Use Case

This example is similar to the example presented in the previous use case. However, upon
delivering order 5, a backup is reported along the initial planned route to deliver order 6.
The route allocation algorithm recalculates the route to ensure timely delivery of the
customer’s order and reduce the amount of time spent delivering orders for the truck
driver. This recalculated route will be given to the dispatcher who will inform the truck
driver through the web application and the truck driver will receive the updated route in
the mobile app.

5. MULTIPLE WAREHOUSES WITH MULTIPLE ROUTES AND MULTIPLE DESTINATIONS

The multiple destination use case is formulated on the assumptions that all 3 actors (Truck
drivers, Truck dispatchers and customers) are involved, the order route is between the
cargo origin point and multiple destination points and external factors such as traffic,
vehicle malfunction are not present.

A customer's input order is allocated to a dispatcher via the allocation algorithm and the
dispatcher then relays the order to a truck driver. Communication between the dispatcher
and the truck driver is facilitated by the web and mobile platforms
communication/notification service. The truck driver's route from the warehouse to each of
the delivery locations will be determined by the routing algorithm. Post order delivery to
the final destination point, the truck driver notifies the dispatcher, which subsequently
notifies the customer that the order has been successfully delivered to the destination
point, as per the customer's order input.

14

Figure 2.4.5. Multiple Warehouses with Multiple Routes and Multiple Destinations Use Case

Given two warehouses, 16 orders at the locations depicted, and four trucks, the algorithm
would output four routes, green, pink, orange, and blue, given the proximity of the orders,
expected delivery times, and load balancing. Each of the four trucks would be assigned to
one of the routes for the day, starting and ending at the warehouse.

6. TRUCK REALLOCATION USE CASE 1

The truck reallocation use case 1 is formulated on the assumptions that all 3 actors (Truck
drivers, Truck dispatchers and customers) are involved, a route has been allocated between
specific cargo origin point and destination points, the truck has already picked up the
customers cargo and external truck related inefficiency factors such as vehicle malfunction,
flat tire or even driver related factors such as ill-health are present.

15

A customer's input order is allocated to a dispatcher via the allocation algorithm and the
dispatcher then relays the order to a truck driver. Communication between the dispatcher
and the truck driver is facilitated by the web and mobile platforms
communication/notification system. The truck driver's route from the warehouse to each of
the delivery locations will be determined by the routing algorithm. External factors such as
the truck breaking down on a route may occur. The broken down truck driver will
communicate to the dispatcher via the application’s communication service. The truck
allocation algorithm will then assign other truck(s) to the deliveries of the broken down
truck. But, the newly allocated trucks’ routes’ destination point will be the location of the
broken down truck. After receiving the cargo from the broken down truck, the newly
assigned truck(s) will have the additional customer order destinations included in its new
route calculated via the route allocation algorithm. Post order delivery to the final
destination point, the truck driver notifies the dispatcher, which subsequently notifies the
customer that the order has been successfully delivered to the destination point, as per the
customer's order input.

Figure 2.4.6. Truck Reallocation on Truck Break Down

16

This example is similar to the example presented in the previous use case. However, shortly
after delivering its first order, the pink truck breaks down. The route allocation algorithm
recalculates the routes of the remaining trucks based on current location and available
capacity. The recalculated route will be given to the dispatcher who will inform the
appropriate truck drivers, in this case the orange and blue truck drivers, through the web
application and the truck driver will receive the updated route in the mobile app.

7. TRUCK REALLOCATION USE CASE 2

The truck reallocation use case 2 is formulated on the assumptions that all 3 actors (Truck
drivers, Truck dispatchers and customers) are involved, a route has been allocated between
specific cargo origin points and destination points, the truck has not yet picked up the
customers cargo and external truck related inefficiency factors such as vehicle malfunction,
flat tire or even driver related factors such as ill-health are present.

A customer's input order is allocated to a dispatcher via the allocation algorithm and the
dispatcher then relays the order to a truck driver. Communication between the dispatcher
and the truck driver is facilitated by the web and mobile platforms
communication/notification service. The truck driver's route from the warehouse to each of
the delivery locations will be determined by the routing algorithm. External factors such as
the truck breaking down prior to leaving the warehouse may occur. The broken down truck
driver will communicate to the dispatcher via the application’s communication service. The
truck allocation algorithm will then assign other truck(s) to the deliveries of the broken
down truck. As the broken down truck has not picked up the customer's order cargo yet,
the newly allocated truck will directly be assigned the route to the customer order pick up
point, instead of the broken down truck location. However, if all trucks are currently in use,
the deliveries for the broken down truck will be reassigned and spread amongst the
functional trucks. Post order delivery to the final destination point, the truck driver notifies
the dispatcher, which subsequently notifies the customer that the order has been
successfully delivered to the destination point, as per the customer's order input.

3 Project Plan

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

We will be using SCRUM as a framework for our project’s development and weekly lifecycle.
Following SCRUM and the agile methodologies, we will complete our weekly status updates.
Furthermore, each week after our client meeting, the team will go over issues/impediments from
the previous week and address them. Development and planning work is expected to be expressed
clearly in the weekly status reports and in standup after each client meeting, and the work for
development should be reflected in a story on the team’s Trello board. We chose SCRUM because it
is the most familiar project management style, and fits closely with our goals and objectives as
developers to complete the project and facilitate communication.

17

Our project will be using Gitlab for version control. We will also be using Trello to help track work,
progress, and aid in our standup meetings. Our primary means of communication will be Discord,
and secondarily we will use emails when a group member is needed.

3.2 TASK DECOMPOSITION

In order to solve the problem at hand, it helps to decompose it into multiple tasks and subtasks and
to understand interdependence among tasks. This step might be useful even if you adopt agile
methodology. If you are agile, you can also provide a linear progression of completed requirements
aligned with your sprints for the entire project.

Task Description

Implement Visualization Tool Front-End Create a user interface for dispatchers and
drivers to view routes and stops

Develop UI for Web App Create a user interface for dispatchers to view
orders and routes, communicate with drivers,
and input changes manually

Develop UI for Mobile App Create a user interface for drivers to view
orders and routes, communicate with
dispatchers, and indicate when a package has
been delivered.

Develop REST API microservices Design and implement application functions
into multiple microservices which will
communicate with the frontend, db and
external services.

Setup application DB Setup db configs and communication with the
API.

Setup application server Setup server to host API and config changes.

Final Application Testing Testing individual components of the web app,
mobile application, and the microservices.

Table 3.2.1. Task Decomposition

Subtasks
Implement Visualization Tool Front-End

- Display external map (i.e. Google Maps, etc)
- Overlay routes (color-coded by truck)
- Overlay stops on routes (color-coded by truck)
- Be able to hide/show specific routes

Develop UI for Web App
- Create home page
- Create visualization page

18

- Create communication page
- Create order overview page
- Create route update/modify page

Develop UI for Mobile App
- Create main screen
- Create visualization screen
- Create communication screen
- Create order list and stops screen
- Implement route-update notifications
- Create “package delivered” input screen

Develop API microservices
- Create communication service
- Create truck allocation service and route allocation service
- Create user account (login, registration, settings) service
- Create user-order service. (New user order)
- Create user order tracking service
- Create Q&A service
- Setup microservice communication with external services (Google maps, Department of

transportation etc)

Setup application DB
- Setup db connection to microservices
- Setup db configs (SQL dialect, security configs, data handling configs)

Setup application server
- Setup server to host api services
- Setup server configs

Final Application Testing
- Test the web app and the mobile application for navigation between views and other

inconsistencies.
- Test the web app and the mobile application for correctly receiving data from the backend
- Test the algorithm using real time metrics.
- Test the individual microservices for their respective functions.
- Setup a testing environment to see if all the components communicate with each other

flawlessly and achieve desired results.

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

● Metrics of interest:
○ UI and visualization tool usability
○ Algorithm update speed (in response to dynamic changes)
○ General algorithm efficiency

● Evaluation criteria:
○ UI and visualization tool usability

■ Create questionnaire for users
■ Responsiveness of UI

19

■ Accuracy of visualization tool
○ Algorithm update speed

■ Time for changes to be returned
○ General algorithm efficiency

■ Compare miles traveled, time driving, packages delivered between a brute
force algorithm and our implementation

○ Algorithm scalability
■ Ease of adding new drivers or dispatchers (measured in change in

efficiency values and update speed as more drivers/dispatchers are added)
● Milestones:

○ Baseline functional UI
○ Alpha UI (first round of user feedback)

■ UI responds to input in under 500 ms
■ Visualization tool at least 75% accurate

○ Beta UI (second round of user feedback)
■ UI responds to input in under 250 ms
■ Visualization tool at least 90% accurate

○ Polished UI
■ UI responds to input in under 100 ms
■ Visualization tool at least 98% accurate

○ Algorithm speed improvements
■ Algorithm can make updates in under 20 seconds
■ Algorithm can make updates in under 10 seconds
■ Algorithm can make updates in under 5 seconds
■ Algorithm can make updates in under 1 second

○ Algorithm efficiency is better than brute force approach
■ Algorithm is 15% more efficient than brute force approach
■ Algorithm is 25% more efficient than brute force approach
■ Algorithm is 50% more efficient than brute force approach

○ Scaling the input space provides minimal decrease in performance
■ Doubling the number of drivers/dispatchers reduces miles traveled and

time driving by 10%
■ Doubling the number of drivers/dispatchers reduces miles traveled and

time driving by 25%
■ Doubling the number of drivers/dispatchers reduces miles traveled and

time driving by 50%

3.4 PROJECT TIMELINE/SCHEDULE

(Gantt chart on next page)

20

Figure 3.4.1. Gantt Chart

21

● First implementation will be completed after the completion of three Sprints
● Each Sprint will be 3 weeks with weekly standup meetings
● Unit testing will be added for each development task
● Integration testing and improvements will be made after the completion of this

development schedule
● Sprint 1: January 18th - February 8th
● Sprint 2: February 8th - March 1st
● Sprint 3: March 1st - March 22nd

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

Risks for each task:

● Implement Visualization Tool on Front-End
○ The biggest risk here is that we struggle to correctly implement the Vehicle

Routing algorithm into the application, or that it takes longer than originally
anticipated. This could take some time to re-plan and evaluate how to handle the
situation. However, we have team members that are confident in figuring out the
algorithm so this is not likely to happen. Risk probability: 0.3

● Develop UI for Web App
○ The biggest risk here is correctly retrieving data from the backend. This shouldn’t

be a big issue because we have members experienced of Angular and React. Risk
probability: 0.3

○ Another risk is that we simply run into defects in the UI that cause us to re-plan.
Even with team members experienced in UI development for a particular
framework, weird defects can always arise, though most of them won’t take long to
solve. Risk probability: 0.2

● Develop UI for Mobile App
○ The biggest risk with the mobile app UI is that it doesn’t meet our standards of

appearance. In other words, we may run into issues where the mobile app UI can’t
look exactly like the mobile version. Risk probability: 0.3

○ Another risk is in what mobile UI the team decides to use (Android vs iOS). We
need to be careful in this decision so we don’t run into any major issues during
development due to lack of experience. Risk probability: 0.2

● Develop REST API microservices
○ Since backend development is the bridge between frontend and the DB, the biggest

risk/challenge is that frontend/backend communication or backend/DB
communication is not working. This would set the team back some time to focus
on the issue and get it resolved, may require some re-planning. Risk probability:
0.4

● Setup application DB
○ The only risk here is the decision on whether or not to use a SQL database or

no-SQL. Similar to mobile development, this decision depends on the experience
of the team and will require time and effort to consider. We have members that are
experienced working with SQL, so this should likely not be an issue. Risk
probability: 0.1

● Setup application server

22

○ There’s hardly any risk to just setting up the application server. The biggest risk is
that the server can’t run for whatever reason, which may require us to take a deeper
look simply using online resources or discussion. Risk probability: 0.1

3.6 PERSONNEL EFFORT REQUIREMENTS

Include a detailed estimate in the form of a table accompanied by a textual reference and
explanation. This estimate shall be done on a task-by-task basis and should be the projected effort
in the total number of person-hours required to perform the task.

Task Description Time (person-hours)

Implement Visualization Tool
Front-End

Create a user interface for
dispatchers and drivers to
view routes and stops

100

Develop UI for Web App Create a user interface for
dispatchers to view orders and
routes, communicate with
drivers, and input changes
manually

80

Develop UI for Mobile App Create a user interface for
drivers to view orders and
routes, communicate with
dispatchers, and indicate
when a package has been
delivered.

80

Develop REST API
microservices

Design and implement
application functions into
multiple microservices which
will communicate with the
frontend, db and external
services.

100

Setup application DB Setup db configs and
communication with the API.

20

Setup application server Setup server to host API and
config changes.

100

Final application testing Testing individual
components of the web app,
mobile application, and the
microservices.

20

Table 3.6.1. Task-Effort Decomposition

23

3.7 OTHER RESOURCE REQUIREMENTS

There should not be a need for any additional resources outside of the software and database
solutions that are used for our project. This is due to the fact that our project is a software project,
so anything besides this will not be necessary. The only thing that could be considered for this
project would be android mobile devices that could be used in order to ensure that our mobile app
software works correctly on different android devices and with different versions of phones.
However, development tools such as android studio come with an emulator in order to remedy
some of this hassle during the development process, so it is unsure at this point whether or not any
android devices will be necessary.

4 Design

4.1 DESIGN CONTEXT

4.1.1 Broader Context

The broader context is situated in the domain of transportation and delivery. Specifically, we
consider a fleet of delivery trucks, a set of orders for goods from stores with given locations and a
set of warehouses where those goods are stored and loaded into the trucks. Given an information
about a road network (map) with corresponding distances/travel times and the capacity of load for
each truck in the fleet the objective of the work is A. utilize some of the existing techniques for
assignments of trucks to destination B. Develop novel solutions to the problem of having one of the
trucks break down(re-distributing its load) C. Implement an interactive system that can manage
users and assignments.

Relevant considerations related to our project:

Area Description Examples

Public health,
safety, and
welfare

This project will aim to use algorithmic
efficiency to benefit the public health by
cutting down the time trucks and other
fleet vehicles are on the road.

Tries to optimize the efficient
delivery of goods(welfare). However,
the findings can be indirectly used in
public health for routing
ambulances. Additionally with
efficiently routing trucks we can
lessen the probability of trucks
coming into contact with pedestrians
so public safety will increase.

Global,
cultural, and
social

Countries that rely on heavy amounts of
consumerism will be allowed to continue
with this practice more through the use
of our product.

Our project is not affected by any
specific societal context such as
nationality, ethnicity and so on.
However, it does reflect an impact on

24

the efficiency of transportation and
delivery.

Environmenta
l

This project will have a deal of impact on
any industry that deals with the
production of gasoline or diesel fuel. This
is due to the nature of efficiency that our
project aims to create for a fleet of trucks.

Minimizing fuel consumption and
the emission of a fleet of trucks. This
will allow for less greenhouse gases
overall to be released companywide
for whoever utilizes our product.

Economic Economics benefits from our project can
fall under two categories. The first is the
savings on fuel cost that businesses can
experience due to our product. The
second is the maximization of profits that
businesses can generate from their
current fleet.

System implementation will be
deployable either on standard
desktop with minimum installation
overhead or on popular mobile
devices (e.g., android). This product
will allow any company that uses it
to optimize costs of delivery and
balance it with reassignment of
deliveries.

Table 4.1.1.1. Responsibility Considerations

4.1.2 User Needs

● Customers
○ Each customer needs to be able to access the menu where he/she can place the

requested products because they want to get products delivered and restocked as
soon as possible.

● Warehouses/Dispatchers
○ Each warehouse/dispatcher needs to be able to summarize all the requests from

the customers, check the availability of the products in the local facility, and
determine the assignment of trucks to delivery locations so that they can keep
track of and be on top of orders that are coming in from customers.

● Truck Driver
○ Each truck driver needs to be able to login and see the assigned route and notify

the completion of a delivery at a particular time and location(products and
quantities) to the warehouse that it was assigned from because they want to be
able to work as efficiently and safely as possible.

4.1.3 Prior Work/Solutions

The VRP has been written about a lot. Broad nature or specific characteristics of the problem.
Previous research includes that done by Nasser A. El-Sherbeny [3], Wang, et. al. [5], and Cappanera,
Requejo, and Scuttelà [2].

25

In his research, El-Sherbeny focused on the various exact methods, heuristics, and metaheuristics
that can be used to solve a VRP with time windows (VRPTW) [3]. While he investigates a large
variety of methods for finding an optimal solution to a VRPTW, the methods are approached from a
theoretical perspective rather than a practical one. As a result, the true optimality of the methods
presented may not be accurate when transitioned to a real-world application.

In their research, Wang, et. al. expand upon the VRPTW problem by including simultaneous
delivery and pickup and optimizing their solution based on a 5 part multiobjective function
(MO-VRPSDPTW) [5]. The two methods they focus on are local search and a memetic algorithm.
While the research comes from a theoretical perspective, they openly acknowledge that the
optimality of the two methods may not translate well when implemented in a practical solution.

Lastly, Cappanera, Requejo, and Scuttelà focus on the skill VRP, an extension of the traditional VRP
that focuses on delivering human services instead of goods [2]. What makes their research
interesting is their specific focus on situations where one individual does not have all of the skills
necessary to complete a job. As a result, multiple “deliveries” must be made to the same customer.

In comparison, what separates this project is the setting that it considers, which is reacting to the
breakdown of a truck and properly executing the reassignment of the routes to the rest of the fleet
so that

A. The goods from the broken truck(s) will be delivered to their destinations, and
B. It will be done in an optimal manner.

As a result, the focus of the above research on the VRPTW problem does not address the same
problem as we seek to address. While many of the aspects are shared between our project and
previous research, the end goals diverge greatly when problem constraints are considered. This
proves to be an advantage to us as customer-specific time windows for delivery increase the
difficulty of finding an optimal solution. Additionally, our focus on the situation where a truck
breaks down and routes need to be recalculated part way through is not addressed in any of the
above research. This is a shortcoming of the above research and will likely prove to be a
disadvantage to us if the solution isn’t immediately obvious.

4.1.4 Technical Complexity

There are three kinds of novelties in this project:

1. Algorithmic: We will solve the very specific problem of reassignment of trucks. This is
being done through an existing application called MapBox. MapBox will be performing a
MultiVehicle Routing Algorithm that we can use for the assignment of trucks.

2. System-wide: We will develop, implement, and deliver a system for managing assignments
of trucks to delivery locations which can be accessed and used by all kinds of entity classes
that participate in this scenario(customers, warehouses, and drivers). Across our project, we
will do integration testing to ensure all components are functioning properly.

3. Technical complexity: Defining proper test cases for an “optimal route” and evaluation
procedures. Our project also focuses on routing trucks with a capacity constraint, and the

26

potential for vehicles to break. This creates additional complexity as a rerouting will have to
occur for broken vehicles. Additionally, a new vehicle must have the capacity to be able to
assist a broken vehicle with deliveries.

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

Use the use cases to see the initial system architecture.

1. Location (Austin, Texas, Chicago, Illinois, Seattle, Washington)
2. Traffic Density and map (A city’s department of transportation w/ API ?)
3. Which dbms to use? (MySql vs GravityB)
4. Interface module (Which type of phone?)
5. Front end Framework (React vs Angular)
6. Backend communication (Spring)
7. Database Management System (MySQL Workbench, Postgres, MSMS)

Subject to changes

4.2.2 Ideation

(7) Considered dbms:

1. MySql Workbench
2. Microsoft SQL server management studio
3. PostgreSQL
4. Oracle SQL Developer
5. Toad for SQL Server
6. Neo4j
7. Gravity

4.2.3 Decision-Making and Trade-Off

Because of the relational nature of MySQL workbench and its ability to be used easily on backend
systems with the use of its specialized drivers we are selecting MySQL workbench for this project. It
also has the added benefit of being able to be run and accessed from multiple different systems
without having data loss. Additionally, this project does not require anything more complex. Should
the complexity increase in the future, we will re-evaluate this decision

27

4.3 PROPOSED DESIGN

4.3.1 Design Visual and Description

Figure 4.3.1.1. System Architecture (See Appendix for higher resolution version)

Components

● Customer/dispatcher/driver interfaces
● DB (User, Truck and Order tables)
● API (Account service, order service, order tracking/update service, route allocation service,

truck allocation service, communication service)
● External API service

28

1.1 A customer can place a new order via the new user order component of the interface which will
be handled by the user order service.

1.2 The user order service will perform CRUD operations with the db, to persist the order
information for later use.

1.3 The order information is passed to the truck allocation service from the user order service.

1.4/1.5 The truck allocation service fetches truck information from the db on the basis of the new
order param inputs and allocates a truck to the order.

1.6/1.7/1.8/1.9 Communication service establishes and handles communication between the assigned
truck dispatcher and customer.

1.10 Order updated with truck information now passed to route allocation service, which will
determine the most efficient route for the truck.

1.11/1.12 Truck Allocation service calls external API (Google Maps, Department of transportation) for
information which will be consumed by the route allocation algorithm to determine the most
efficient route.

1.13 Route allocation service performs CRUD operation to update route parameters of the order in
the db.

1.14 Order with truck and route information is passed to the dispatcher.

1.15/1.16/1.17/1.18 Communication service establishes and handles communication between the
assigned truck dispatcher and assigned truck driver. Dispatcher passes route information to the
driver.

1.19 Post order complemention, via Order status update component of the driver UI, the driver
notifies the customer which is handled by the order tracking service.

1.20/1.21/1.22 The order tracking service performs CRUD operations to update the order status in the
db. The updated order status is forwarded to the customer.

2/2.1 A customer can track the status of their order or cancel their order via the User order tracking
component of the UI. The requests will be handled by the order tracking service, which will fetch
the order from the db and relay it to the user. If the order is cancelled, the driver will be notified via
the order status component of the driver UI.

3. User account settings can be accessed via the user settings component of the customer UI. The
requests will be handled by the user account service, which will perform CRUD operations with the
users table in the db.

29

4.3.2 Functionality

Functional requirements:

1. Truck drivers should pick-up locations.
2. Truck drivers should be able to deliver to the picked location.
3. Find the nearest truck in case of any breaks.
4. Find the set of closest trucks that can take care of the load that the truck has
5. Set of orders and trucks w/ given capacity.

Non-functional requirements:

1. App should have access to all truck drivers databases.
2. App should have enough information about all warehouses locations, type of loads and

capacity.

Our design functions by taking the orders in the system and the associated delivery locations (red
dots in the below figures) and generating an optimal set of routes (denoted by green, pink, orange,
and blue lines in the below figures) based on the available number of trucks and warehouse
locations(denoted by grey boxes in the below figures). Routes will start and end at the same
warehouse and trucks will only deliver goods from a single warehouse. The result of this step is
shown in Figure 4.3.2.1. Once the routes have been decided and assigned, the truck drivers will be
notified via the UI system of their route for that day. In our specific case, we are addressing the
instance in which a truck breaks down. Suppose the pink truck breaks down at the location
depicted in Figure 4.3.2.2. The UI system will be used to notify the central system that the pink
truck has broken down Based on the locations of the other trucks, their load capacity and the
remaining delivery locations, two trucks are assigned to take over the remaining deliveries for the
pink truck and their routes are recalculated. In this instance, the blue and orange trucks are
identified as the optimal choices and new routes for these two trucks are generated as depicted in
Figure 4.3.2.3. The orange and blue truck drivers are then notified of their updated routes via the UI
system. This system meets all of the listed functional and non-functional requirements sufficiently.

30

Figure 4.3.2.1. Initial Routes Calculated by Algorithm

31

Figure 4.3.2.2. Pink Truck Breaks Down

32

Figure 4.3.2.3. Load Divided Between Blue and Orange Trucks. Routes Recalculated Accordingly.

4.3.3 Areas of Concern and Development

Primary concerns for delivering a product/system that addresses requirements and meets user and
client needs:

1. For our current design, we have a better sense of how we want to structure our backend
services as opposed to our frontend UIs. This lack of description in the UI design can raise
a possible concern because it can leave multiple interpretations to team members, making
the project structure less organized. In the upcoming week, this issue will be addressed by
the team.

2. Another possible concern is the usage of MapBox external API. MapBox will be crucial for
our applications success and is needed for visualization and vehicle routing.

Immediate plans for developing the solution to address those concerns?

33

1. We plan to hold multiple team meetings to tackle this concern, so everyone in the team
could get a single and clear understanding of how the UI design should be implemented, so
it is not open to interpretation.

2. We plan to tackle this problem by collectively sharing our understandings of the mapbox
api’s. We plan to use widely available resources on the internet to educate ourselves about
the api and use tutorials to get a basic simulation working as soon as possible.

What questions do you have for clients, TAs, and faculty advisers?

1. Our faculty adviser/client and TA have been very helpful in answering any questions we
have. At this point in time we are satisfied with the direction of our project. Should any
questions arise, we will not hesitate to ask them.

List other functional requirements. List how the concerns are met with the current system. Map
them to how different components interact with each other to meet the requirements.

1. Our concern of not having a clear UI design could be addressed by using our trello board
for looking up the tasks. This current system would be efficient in assigning tasks, checking
up on progress, and viewing the progression to a final product.

4.4 TECHNOLOGY CONSIDERATIONS

API development

The main technology chosen for API development is the Spring framework.

Strengths:

Spring provides several additional libraries which support a range of functions which can be
implemented in the application.

Spring provides a powerful abstraction to JEE specifications such as JDBC and JPA.

Spring provides declarative support for caching, validation, transaction, and formatting.

Spring ensures fast performance, as it ensures efficient startup, shutdown and optimized execution.

Weaknesses:

Development in Spring may be complex at times, as the learning curve for working with JPA and
JDBC is quite high.

Mobile client development

The main technology chosen for mobile client development is the Android platform.

Strengths:

34

Due to the various methods of measuring and controlling application performance, the Android
platform allows for greater versatility and scalability in development.

The open source nature of Android application development provides a large number of choices to
open source libraries and third party API’s to choose from during development.

Compatibility of the Android platform with multiple API’s and libraries is really important, as it
does not require developers to write custom middleware or libraries in order to port
non-compatible libraries to the Android platform.

Web client development

Web development will be taking place through the use of the React js framework. This was done
both due to team knowledge of the framework, but also due to market resources surrounding React.

Strengths:
React allows for customization of pages as well as flexibility, since there are preset parts that you
can use but also customize one they are in pages.

React also is very well documented which will allow for errors and problems to be resolved more
easily.

React is also simple and scalable, so it can allow us to create and demo ideas faster than using a
non-framework based approach.

Weaknesses:

Some members of the web client team are not as familiar with React as they are with standard
HTML, however this problem will be remedied by other team members' knowledge of the
framework, as well as the amount of resources available to learn React.

4.5 DESIGN ANALYSIS

To this point we have spent most of our time brainstorming, researching, and deciding on the
best software tools that we will be using for our design. We have been reviewing some past
research and evaluating which pieces will result in the most success for our project. This
digging has been fruitful, mostly due to the documentation that past researchers have done. As
a result, the focus of the research that we looked at does not address the same problem as we
seek to address. While many of the aspects are shared between our project and previous
research, the end goals diverge greatly when problem constraints are considered. This proves to
be an advantage to us as customer-specific time windows for delivery increase the difficulty of
finding an optimal solution. Additionally, our focus on the situation where a truck breaks
down and routes need to be recalculated part way through is not addressed in any of the above
research. This is a shortcoming of the previous research that will likely prove to be a
disadvantage to us if the solution isn’t immediately obvious. Overall, our design is very solid
and much better than the initial delivery apps.

35

4.6 DESIGN PLAN

The design plan is to complete every development and testing subtask listed in (3.2). The use-cases
listed will be implemented across three separate 3-week sprints (Figure 3.4.1). The use-cases,
requirements, and constraints were gathered through meetings with our client. In our design
architecture (Figure 4.3.1.1.), there is a series of services. The Route Allocation Service will be
responsible for route allocation response time using MapBox. The Truck Allocation Service will be
responsible for the Truck objects, which given a capacity field, will be responsible for our truck
capacity requirement. The Communication Service will be responsible for informing any users,
admin or truck driver, of any necessary updates (ex. broken trucks, new orders) regarding deliveries.
Functionality and requirements are further detailed in the previous section 4.3.1.

5 Testing
For our team we aim to test a multitude of different scenarios that connect with our use cases and
requirements. This will cover not only the database and the external api’s, but also the backend
connectivity as a whole. These cases will allow us to be sure that as a whole the backend for the
system is functioning properly and is able to run the algorithm and generate routes from given data
both from the api’s and the database. While these backend unit and system tests are occurring the
frontend mobile and desktop applications will also be tested. These tests will align with use cases
regarding the various types of users that our program can have and how they would go about using
the program. The challenge for this testing model is testing the connectivity of the frontend and
backend. Since this project has only one backend that is going to be deployed to two different
frontend platforms, the challenge will be coming up with a comprehensive amount of tests that are
able to be used to verify use cases in both the mobile and desktop application.

5.1 UNIT TESTING

The individual units that exist within our program are the customer interface, the dispatcher
interface, the driver interface, the communication service, the database, and also the use of external
api that covers the algorithm for the program. These interfaces contain units within them that will
all be individually tested to ensure that the use cases for each user are working correctly. This will
be done through different ways though depending on which part of the program we are dealing
with.

For frontend testing we are looking at using Selenium or Appium in order to simulate a specific user
running and working within the frontend. This will allow for tests to be run that follow the
information pathway that is developed for that specific use case and see if the workflow that the
user would follow in fact works within the scope of the frontend. Additionally for individual
frontend pages field placement and style will be checked to ensure that text fits within input fields
and additionally that pages have proper connectivity to each other within both frontend
applications.

For the backend of the project the database will be tested in a few different ways. Firstly we will run
a series of queries and check the results in an attempt to see what commonly used queries do to the
data within the database. These queries will follow the flow of use cases that were developed and
will simulate the data that would be needed in order to run the assignment algorithm. These tests
and queries can either be run through a program such as MySQL workbench or through a terminal.

For the backend algorithm code and the api’s these will be tested through the use of following use
cases with static data numbers. Standard expectations for the algorithm will be developed such that

36

we can have expected results from these static data numbers and use them to verify use cases for
different assignment scenarios. Additionally the api’s will be tested to ensure that we are able to
reliably use them to collect data and information that is needed for the assignment algorithm.
These unit tests will follow the standard unit testing framework and will be done in Junit or the
equivalent testing environment.

5.2 INTERFACE TESTING

The interfaces present in the current iteration of the application architecture are the customer
interface, dispatcher interface and driver interface. The customer interface will be used by the
customer to interact with the application functions and interact with order dispatchers via the
communication service. The dispatcher interface will be used by the dispatcher to interact with
application functions and interact with the customers and drivers associated with the orders. The
driver interface will be used by drivers to interact with application functions and interact with
dispatchers associated with orders.

In the current iteration of the architecture, interfaces are being treated as separate components, and
access to the components are determined by user role. Shared interfaces such as user login and
registration are shared across all users, but other interface components are user role dependent. Ex:
Customer users can only interact with the customer interface and will be limited to interaction with
the customer interface, and not the dispatcher and driver interface.

Access to specific API services (specific application function) is also dependent on user role and
subsequently user interface. Ex: Http calls to the new order service are only allowed from the
customer interface.

Interface testing will mostly be based on the black box testing model. Black box testing is the most
suited model for interface testing as the goal of this testing method is not to dig deep into the code,
going through the application’s internal functioning, but to interact with the UI, test the end user
functionality, and make sure that every input and output of the system meets the specified
requirements.

The tools under consideration to be used for the mobile UI testing are Robotium and Espresso.

Robotium is an android Testing framework to automate test cases for native and hybrid
applications. Robotium can be used to create strong automatic GUI testing cases for Android
applications.

Espresso is a UI test framework that can be used to create automated UI tests. Espresso tests run on
an actual device or emulator and behave as if an actual user is using the app (i.e. if a particular view
is off screen, the test won't be able to interact with it).

● Customer Interface testing scenarios :
○ Customer mobile UI will actively allow user touch input such as swipes or clicks, in order to

test functional status of UI components such as button on click listeners and swipe
listeners.

○ Customer web UI will actively allow user input such as mouse clicks and scrolls, in order to
test functional status of UI components such as buttons on click listeners and scroll
listeners.

○ Customer mobile UI will redirect to the correct page on user input such as swipe or click, in
order to test navigation between screens/pages.

37

○ New order form will allow users to input data into form fields, and run UI side validations
on the form field data.

○ Messaging page will actively update and persist message data between user and order
dispatchers.

○ Messaging page will correctly redirect to user messages on user click input, in order to test
messaging page navigation.

○ Order tracking page/screen will respond to user order information requests with correct
data, in order to test backend service functionality and frontend json response handling
and formatting.

○ Truck allocation page will display updated and accurate truck information on new user
order input. Automated page navigation between new order form and truck allocation page
will be tested.

● Dispatcher Interface testing scenarios :
○ Dispatcher mobile UI will actively allow dispatcher touch input such as swipes or clicks, in

order to test functional status of UI components such as button on click listeners and swipe
listeners.

○ Dispatcher web UI will actively allow user input such as mouse clicks and scrolls, in order
to test functional status of UI components such as buttons on click listeners and scroll
listeners.

○ Dispatcher mobile UI will redirect to the correct page on user input such as swipe or click,
in order to test navigation between pages.

○ Messaging page will actively update and persist message data between order dispatchers,
users and truck drivers.

○ Messaging page will correctly redirect to user messages on dispatcher click input, in order
to test messaging page navigation.

○ Order tracking page/screen will respond to dispatcher order information requests with
correct data, in order to test backend service functionality and frontend json response
handling and formatting.

○ Route allocation page will display update and accurate route information on the google
map component on the page. Calls to the google maps api and page map component
updation will be tested.

● Driver Interface testing scenarios :
○ Driver mobile UI will actively allow user touch input such as swipes or clicks, in order to

test functional status of UI components such as button on click listeners and swipe
listeners.

○ Driver mobile UI will redirect to the correct page on user input such as swipe or click, in
order to test navigation between screens/pages.

○ New order form will allow users to input data into form fields, and run UI side validations
on the form field data.

○ Messaging page will actively update and persist message data between order dispatchers
and truck drivers.

○ Messaging page will correctly redirect to user messages on driver click input, in order to
test messaging page navigation.

○ Order tracking page/screen will respond to driver order information requests with correct
data, in order to test backend service functionality and frontend json response handling
and formatting.

○ Route allocation page will display update and accurate route information on the google
map component on the page. Calls to the google maps api and page map component
updation will be tested.

38

5.3 INTEGRATION TESTING

One critical path to test will be a customer User correctly see its orders. This will require the user to
view their orders correctly in the web application by requesting information from the Order
Tracking Service. The Order will be in a database and has to have been set from the Truck and
Route Allocation Services. Additionally we will need to test the cycle starting from the Dispatcher
Interface. The dispatcher web application will most importantly need driver orders which will be
dependent on the Route Allocation Service, then the Route Allocation Service will be using an
external API to process traffic and map data. Also, a Driver will use the Driver Interface in the form
of a mobile application, this will be dependent on the Communication Service and Order Tracking
Service. These three are our critical integration requirements because of our primary use cases. A
Customer would need to track their orders, a Dispatcher would need to submit new orders, and a
Driver would need to view its orders assigned.

One critical aspect we will assess is the response time from customer order to assignment. This will
involve an event from the customer web application which calls the user order service, truck
allocation service, route allocation service, map API, and calls our vehicle routing algorithm.

We will test this by performing a new user order from our front end web application, in Chrome
Developer Tools we will be able to view the response time of this response which must use all of the
services listed previously.

5.4 SYSTEM TESTING

For system testing strategy is to focus on interaction between all parts of the system as much as
possible, and individual tests should be less plentiful and more general. Starting with unit tests,
they are still important for system level testing but don’t need to be as plentiful or specific. For
example, a set of unit tests on a file in the customer interface can probably be narrowed down to a
single test that covers the general functionality of that file. In terms of interface testing scenarios, I
think it’s most important to zoom in on scenarios that cover as much of the entire system as
possible. An example would be the order tracking scenario in the dispatcher interface, where the
page responds to driver order information requests. As stated above, this test is important because
it tests both service functionality on the backend and json response handling/formatting on the
frontend. And then integration tests are made for interaction between all parts of the stack, so most
of those can be kept and considered part of the system-level testing.

No new tools need to be added for these tests, but rather a combination of the same tools that are
used for unit and interface and integration testing. Unit test files should still be made in the code
editors that we build the app in. Interface tools should use both dev tools on the frontend and
postman on the backend. And then integration testing will use a combination of these depending
on the functionality being tested.

5.5 REGRESSION TESTING

The most critical of features to our program is the reassignment algorithm, so ensuring that new
changes do not break this will be key when looking at regression testing. The reason this is so
important is that the algorithm is what will be the key part of the project that all other components
need to interact with, so any requirement for the project is directly tied to the correctness of this

39

algorithm. To ensure that the reassignment algorithm does not break upon changes being made,
firstly we will use the standard data set that was developed for unit testing to verify that with new
changes the assignment algorithm still outputs the expected results. Once we can verify that the
assignment algorithm works as expected then we can move on to automated tests on both the
mobile and desktop applications in order to verify that data and requests are correctly being sent to
the backend. This will narrow down the scope of any problems that arise to one specific frontend
platform rather than having to work through both in the event of any bugs. Additionally these tests
will allow us to verify if any problems are occurring with the database if specific known queries are
used to retrieve information such that the result of what these queries return is known. The new
features or implementations that we foresee that may cause issues is the use of a larger fleet of
trucks or warehouses, which might cause issues within the database, or adding additional ui
changes. The regression testing in these cases needs to verify the response time of the program as
adding data such as this or new ui pages should not alter the response time of assignment in any
drastic way. The only thing that would be a drastic change to the core of our project would be a
change to the reassignment algorithm itself. This new algorithm would force our regression testing
to follow a different method of testing each component of both the frontend and backend with
every part except the new algorithm. This would ensure that all of the other components are
functioning properly independently and together. From there the connections between the new
algorithm and each individual component would need to be tested and then finally automated tests
like the ones mentioned earlier would be used to verify that prior use cases that were satisfied with
the program are still functioning properly and as expected.

5.6 ACCEPTANCE TESTING

Our approach to acceptance testing is to incorporate it into our sprints as we are using the agile
approach. Before every sprint, we will lay out the goals to be met in regard to what the client wants
and what the specifications state. At the end of each sprint we will review if these goals were met
and if the appropriate functional and non-functional requirements are being met. When possible,
we will verify functional requirements are being met through dry end-to-end testing as stated in
the requirements section (from the requirements document). As for the rest of the functional and
the non-functional requirements, those will be verified through regular meetings with the client.
Consistent communication with the client will ensure that we remain on track and the final round
of acceptance testing goes smoothly.

5.7 SECURITY TESTING (IF APPLICABLE)
While security is not a major concern for this project, we will use basic admin tools for the
databases to ensure that a user is registered and has password secured access to the system.
Additionally UI fields will be protected so that no code or other malicious user can use the system.

5.8 RESULTS

We don't have any results ready since we haven't tested anything yet. But we have a list of unit
testing that we will be using in order to test our project.

40

Figure 5.8.1: Unit testing

Figure 5.8.2: Testing plan

41

Our testing plan follows the test Driven Development software development process. In this
process, requirements for the project are broken down into different individual test cases. This is so
that everything that is created so far can be measurable. After this, code is redesigned for each test
case so that the test case passes. Once the developer does this for a number of requirements, the
tests are refactored and the process is completed again. This is so the tests get more detailed and
the code gets much more secure.

6 Implementation
DB implementation

● The SQL dialect to be used is MySQL. The tables which will persist data will be orders,
users and trucks.

● The relationship between users and orders will be one-to-many(1:M), as customer users can
have multiple orders, but each order can only have a single user assigned as the order
owner. Similarly, driver users can be assigned to multiple orders, but each order can only
have a single driver user assigned.

● The relation between trucks and orders will be one-to-many(1:M), as trucks can have
multiple orders, but an order can only be assigned to a single truck.

● The relation between driver users and trucks will be one-to-many(1:M), as a driver user can
drive multiple trucks, but a truck can only be assigned to a single driver.

● The relation between dispatcher users and trucks will be many-to-many(M:M), as an
available truck can be assigned to multiple dispatcher users and a dispatcher user can
manage multiple trucks.

API implementation

● The API consists of multiple microservices. The API will be developed using Spring Boot.
● The API implementation will be based on the MVC (Model-View-Controller) architecture.

The implementation will be broken down into models/entities, controllers and services.

UI Implementation

● The UI for the web app will be implemented using React (HTML, Javascript, CSS)
● The UI for the mobile app will be implemented using Android Studio (Java)
● Each of the three types of users (customer, dispatcher, driver) will have their own landing

page, settings, and navigation to access what they need based on our design
● Both versions of the UI will have consistent CSS styling
● Both versions will utilize data binding with frontend components
● Both versions will communicate with the same backend APIs mentioned above

ENTITIES

Each User entity will consist of data attributes:

1. name
2. address

42

3. location
4. role

Each Truck entity will consist of data attributes:

1. make
2. color
3. weight
4. fuel capacity
5. cargo capacity
6. availability
7. driver
8. dispatcher
9. license plate no.

Attributes such as fuel capacity and cargo capacity will be used in the truck allocation service, as
these parameters will be used in the allocation formula, which compares the order entity weight
and amount attribute to the trucks capacity and ability to most efficiently and securely transport
the cargo.

Each order entity will consist of data attributes:

1. cargo pickup origin location
2. cargo destination location
3. weight
4. number of items(if applicable)
5. type of cargo
6. order owner
7. assigned truck
8. route reallocated(if applicable)
9. truck reallocated(if applicable)

The assigned truck attribute will maintain a relationship with the driver and dispatcher user
entities, which will allow order entities services to get access to an order's associated driver and
dispatcher information. The origin location and destination location data will be consumed by the
route allocation service.

The route reallocated and truck reallocated boolean variables will assist in keeping track of whether
an order was fulfilled without any irregularities such as obstacles or obstructions. This persisted
data can potentially be used to further optimize API services and algorithms so the number of route
reallocation or vehicle reallocation is reduced.

SERVICES

The majority of services will be implemented using the Spring framework and will perform multiple
functions such as DB CRUD operations and algorithm execution, with the exception of few services
which will be implemented using external APIs such as route mapping and communication.

Communication, account, and order tracking services will be accessible to all users.

43

1. Communication service will potentially be implemented using an external API such as
Firebase Cloud Messaging or Twilio Programmable Messaging API.

2. Account service will be a ground up internal implementation. This service will allow users
to perform account management actions such as changing personal information.

3. Order tracking service will be a ground up internal implementation. This service will allow
users to track the status of active orders, such as the order cargo condition and the location
of the cargo.

New order service will only be accessible to customer users.

4. New order service will be a ground up internal implementation. This service will allow
customer users to place new orders.

Order management service is only accessible to customer, driver and dispatcher users.

5. Order management service will be a ground up internal implementation. This service will
allow customer, dispatcher and driver users to actively track and update the status of
orders.

The truck allocation and route allocation services are not directly accessible by users, but instead
are called by other services.

6. Truck allocation service will be a ground up implementation. The service will essentially
assign trucks on the basis of an algorithm which consumes order and truck params and
outputs the truck which will ensure the most efficient and safe delivery of the cargo.

CONTROLLERS

Each service has its own respective controller which will service http requests from clients with json
data responses. Http request/response handling with the client will potentially be handled via
implementation using Retrofit or OkHttp libraries. Image files will be handled using Picasso library.

Controllers will handle request/response filtration on the basis of user role. Each request to the API
will consist of user information such as username and user role. A user with the role designated as
customer will only be able to receive 200 http responses from the new order service, as the request
has gone through successfully. But a user with the role designated as driver will receive a 401/403
http response, as drivers are not allowed to make new orders.

7 Professionalism
This discussion is with respect to the paper titled “Contextualizing Professionalism in Capstone
Projects Using the IDEALS Professional Responsibility Assessment”, International Journal of
Engineering Education Vol. 28, No. 2, pp. 416–424, 2012

44

7.1 AREAS OF RESPONSIBILITY

Area of
Responsibility

Description ACM addresses

Work Competence Doing high quality and effective
professional work

2.2 Acquire and maintain
professional competence -
taking responsibility for
maintaining competence,
continuing to learn and meet
high standards.

Financial
Responsibility

Products provide value for their
reasonable cost

Responsibilities to Employers:
professionals should not have
any conflict of interest and be
loyal to their employer to
provide value.

Communication
Honesty

Progress is communicated honestly to
stakeholders. No deception.

2.6 Parties have the obligation
and responsibility to keep that
party properly informed and
involved for that work.

Health,Safety,
Well-Being

Ensure safety and health Moral Responsibility -
responsibility is shared for
safety of a product by all
individuals collaborating

Property
Ownership

Respecting other’s information 1.2 Avoid harm to others,
including their property. 1.5
honor property rights including
copyrights and patents.

Sustainability Protect the environment 1.1 1.2: computing professionals
shall design and develop
systems alert to any
environmental damage -
avoiding harm to any unwanted
environmental impacts.

Social
Responsibility

Product provides some value to society 2.7/3.2: Improve public
understanding of computing
and its consequences - share
technical knowledge with the
public.

Table 7.1.1. ACM Areas of Responsibility [1]

45

Area of Responsibility Differences between ACM and NSPE

Work Competence ACM 2.2 focuses on the general high standards
regarding professional competence which
include reflective analysis, ethical challenges,
and upgrading skills. Meanwhile NSPE 2.2
states that an engineer should not partake in
work and projects that are not a part of their
field or they are not qualified for. It focuses on
the qualifications of the engineer and
questions their competence for a particular
project.ACM 2.6 is closely related to NSPE 2.2

Financial Responsibility ACM states that professionals should not have
any conflict of interest and be loyal to their
employer to provide value. What NSPE 2.4
states differently from ACM is that engineers
should not accept financial compensation for a
project from multiple parties. Engineers shall
not solicit or accept financial compensation for
work they are responsible for.

Communication Honesty ACM 2.6 says that parties have the obligation
and responsibility to keep that party properly
informed and involved for that work. NSPE says
that engineers shall advise their clients or
employers when they believe a project will not
be successful and that they shall not attempt
to attract an engineer from another employer
by false or misleading pretenses.

Health, Safety, Well-Being ACM mentions that responsibility is shared for
safety of a product by all individuals
collaborating. NSPE section 2.1 addresses the
health, safety aspect in a much broader way. It
includes that if engineers’ judgment is
overruled under circumstances that endanger
life or property. Engineers should not permit
the use of their name businesses that they
believe have engaged in fraudulent activities.

Property Ownership ACM section 1.2 states that avoid harm to
others, including their property and 1.5 states
that honor property rights including copyrights
and patents. NSPE only briefly mentions that
an engineers’ designs and data referring
exclusively to an employer’s work are the
employer’s property.

46

Sustainability ACM section 1.1 1.2 addresses that computing
professionals shall design and develop systems
alert to any environmental damage - avoiding
harm to any unwanted environmental impacts.
NSPE section 3.2.4 only briefly discusses
sustainability as compared to ACM.

Social Responsibility ACM 2.7/3.2 instructs to improve public
understanding of computing and its
consequences - share technical knowledge with
the public. NSPE treats social responsibility in
a much broader way. It states that engineers
should not omit a material fact. they should
prepare technical articles for the press. They
are encouraged to participate in civic affairs.

Table 7.1.2. Differences in ACM and NSPE code of ethics [1], [4]

7.2 PROJECT SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS

Work Competence - HIGH

Work Competence is a major part of our project as individuals and teams who accept personal and
collective responsibility for gaining and sustaining professional competence are essential. We as a
team would develop and enhance our skills to meet the project requirements to deliver an optimal
product. Doing solo research and attendance at team and client meetings is essential to showcase
work competence. Our team encourages and facilitates these activities. Our team is at a High rating
for work competence because it is absolutely essential for the development of our deliverables.

Financial Responsibility - MEDIUM

While financial responsibility is not a major part of our project, it is applicable in a few regards. The
primary aspect is ensuring that we do not knowingly implement a suboptimal solution when a
better solution is possible and realistically doable. Implementing a suboptimal solution would not
be providing our best work and would be depriving our mentor of a more desirable final product.
Additionally, such a solution could require a more expensive server in order to be efficient. Such an
expense would not be financially responsible when optimizations could realistically be made to
bring the cost down.

Our team is currently at a medium rating for financial responsibility, mainly because we have not
done much in regard to actual implementation. As such there haven’t been any decisions that carry
financial weight so claiming high rating would not necessarily be fair, but it is something that is on
our mind as our project centers on optimization so we are always trying to get the most out of as
few resources as necessary.

Communication Honesty - HIGH

Communication honesty will be a very important part of our project. Considering that we’re a large
group, consistent organization of roles and assigned tasks is critical in preventing discredit of
intellectual property. In addition, we need to be careful in honoring the property rights of any
software we research and use that’s not ours. In terms of trust, a large team like ours needs to have

47

trust that we can each complete the tasks that we assign for ourselves. And then finally, it’s
important that we do our best not to discriminate or tolerate discrimination on the basis of race,
sex, religion, age, disability, national origin, or other such factors.

Health, Safety, Well-Being - MEDIUM

Health and safety are definitely important for our project to manage the risks and protect our user’s
products. As many other projects or workplaces, users need to feel safe when they are using a
certain product. Health and safety are not only to ensure that we gain our users' trust, but it can
also lower any extra cost that might accrue due to any damage or loss for the products.

Since we haven’t done any actual implementation yet, I would say our group is on the medium
range for this responsibility. We have been mostly working on research and deciding on what
platforms we will be using, but health and safety is very important and will be considered when we
start implementing our design.

Property Ownership - HIGH

We as a team are cognizant of not harming individuals or corporations in terms of unjustified
physical or mental injury, unjustified destruction or disclosure of information, and unjustified
damage to property, reputation, and the environment. It is of HIGH importance to our team. We are
devoted to applying the best practices everywhere needed. If a conflict of property rights arises, we
shall work towards resolving it in a non-hostile manner. If we may need to use or incorporate any
individual’s or corporation’s property, we shall do it in the most ethical manner possible.

Sustainability - MEDIUM

Sustainability is directly tied to our goal. The more optimized the initial routes and new routes are,
the less time the trucks will be one the road. This means less carbon emissions from the trucks.
Additionally, if our algorithms are optimized, they will run for shorter periods of time, meaning less
electricity is used. So, our project by definition is geared toward sustainability.

The reason for the medium rating is that we have not currently done much work that is directly tied
to these related processes. Most of our effort has been on research and selecting the external APIs,
tools, and languages that will be used to implement our design. Our rating for this category should
increase to high once development has started.

Social Responsibility - MEDIUM

As computer professionals, it is our team’s responsibility to share technical knowledge with the
public, foster awareness of computing, and encourage understanding of computing. It is our
responsibility to communicate with individuals outside our group and the communication should
be clear, respectful, and welcoming. Important issues that shall be discussed include the impacts of
computer systems, their limitations, their vulnerabilities, and the opportunities that they present.
Our team accepts the associated social responsibilities that includes reducing harm to the public
and raising awareness of the influence of our product in the relevant areas and businesses.

7.3 MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA

Sustainability on professional responsibility is both very important to our project and one that we
have been conscious of, be it indirectly. This responsibility is important to our project because it is

48

one metric by which we could measure success. The more optimized our algorithm, the less
electricity and gasoline will be used. We have demonstrated responsibility in this regard by
exploring several possibilities for optimizing our routing algorithm. We have looked into
implementing algorithms from scratch as well as using existing external APIs and tools.
Optimization has been a priority during this process, but so has ease of implementation. Both of
these are correlated to sustainability because while a highly optimized algorithm will definitely lead
to short routes and thus higher sustainability, if the implementation is difficult and requires much
longer to thoroughly implement and test, the net gain might not be as high as anticipated.
Additionally, there is no guarantee that an algorithm implemented from scratch that is theoretically
more efficient will be more efficient in practice. In such an instance, it is likely better to go with an
existing implementation that has been tested and/or optimized by several other developers. This
particular issue has impacted our project by pushing us to go with an existing service in Mapbox
because it is proven and we are less likely to waste resources implementing an algorithm that may
or may not be better.

8 Closing Material

8.1 DISCUSSION

As most of this semester has been dedicated to creating a concrete development plan, minimal time
has been given to developing the assigned product. While we do have a rough prototype, it does not
come close to satisfying the requirements outlined in this document. However, we have thoroughly
planned out how we will meet all of the requirements next semester. The steps we will take to
satisfy the requirements can be found throughout this document, primarily in section 3.4 with the
Gantt chart and section 4.4 where we outline the proposed technologies and steps for
implementing our design.

8.2 CONCLUSION

The project goal for our team is to implement a truck delivery app that will solve the problem
of assigning a truck from a given fleet to a new request, or how to re-assign truck(s) to respond
to dynamic changes in traffic and requests. This design should meet and satisfy every user's
need for this app. Currently we have done our research and we decided on what software
functionality we will be using in developing our app. Overall, our team has made a significant
process on our project this semester and we are planning to start working on our
implementation starting from January and have it done in May. Next semester we are aiming to
create a working truck allocation algorithm, create UI pages and experiment with react, and
verify existing solutions that we found from previous research that we have looked at while we
were trying to find the best solution for our design. Whether or not these goals will be achieved
is to be seen. We believe our work in designing and planning our solution will lead to each goal
being sufficiently met or exceeded. Similarly, alternate designs that would have led to better results
will not be known until we attempt to implement the solution outlined in this document.

49

8.3 REFERENCES

List technical references and related work / market survey references. Do professional citation style
(ex. IEEE).

[1] Association for Computing Machinery, “Code of Ethics,” Code of Ethics, 2018. [Online]. Available:
https://www.acm.org/code-of-ethics. [Accessed: 05-Dec-2021].

[2] Cappanera, P., Requejo, C., & Scutellà, M. G., “Temporal constraints and device management for
the Skill VRP: Mathematical model and lower bounding techniques”, Computers & Operations
Research, vol. 1024, no.1, Dec. 2020, doi:10.1016/j.cor.2020.105054

[3] El-Sherbeny, N. A., “Vehicle routing with time windows: An overview of exact, heuristic and
metaheuristic methods”, Journal of King Saud University - Science, vol. 22, no.3, pp. 123-131,
doi:10.1016/j.jksus.2010.03.002

[4] National Society of Professional Engineers, “Code of Ethics for Engineers”, Code of Ethics for
Engineers, July 2018. [Online]. Available: through Canvas Professionalism assignment.

[5] Wang, J., Zhou, Y., Wang, Y., Zhang, J., Chen, C. L., & Zheng, Z., “Multiobjective Vehicle Routing
Problems With Simultaneous Delivery and Pickup and Time Windows: Formulation, Instances, and
Algorithms”, IEEE Transactions on Cybernetics, vol. 46, no. 3, pp., 582-594,
doi:10.1109/tcyb.2015.2409837

8.4 APPENDICES

8.4.1 Important Resources

Link to higher resolution version of Figure 4.3.1.1. System Architecture:
https://drive.google.com/file/d/1gKmW90dJ6XZqK3dwpKF0IE1DHZKHngbK/view?usp=sharing

Mapbox api:

https://docs.mapbox.com/api/navigation/directions/

https://docs.mapbox.com/api/navigation/map-matching/

https://docs.mapbox.com/help/glossary/geocoding/

https://docs.mapbox.com/api/navigation/

8.4.2 Team Contract

Team Members:

1) Joshua Heroldt

2) Nolan Slimp

3) Bernard Fay

50

https://drive.google.com/file/d/1gKmW90dJ6XZqK3dwpKF0IE1DHZKHngbK/view?usp=sharing
https://docs.mapbox.com/api/navigation/directions/
https://docs.mapbox.com/api/navigation/map-matching/
https://docs.mapbox.com/help/glossary/geocoding/
https://docs.mapbox.com/api/navigation/

4) Matthew Medley

5) Indrajeet Roy

6) Asma Gesalla

7) Siddharth Rana

Team Procedures

1. Day, time, and location (face-to-face or virtual) for regular team meetings:

The current time and location for regular team meetings will be on discord following the TA
meeting on Fridays at 1:30-2:00. This time will be allocated to weekly scrum sessions where each
team member will give an update on the progress that has been made for the week.

2. Preferred method of communication updates, reminders, issues, and scheduling (e.g., e-mail,
phone, app, face-to-face):

Communication updates are to be given in two forms. Primary communication will occur through
discord with notifications being sent to all group members when there are events or meetings
occurring related to the team. A second method of communication is email, where if anyone has
not made contact with the team for an event or meeting an email reminder will be sent out to the
specific members of the team who were unresponsive.

3. Decision-making policy (e.g., consensus, majority vote):

Consensus will be the main method of reaching policy decisions within the group. This will be done
for all whole-group related topics, while when smaller teams are created for different sections of the
project those individual teams will be able to reach decisions by consensus that they think are
beneficial for their small group and can bring those decisions to the entire team for discussion if
they see fit.

4. Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be
shared/archived):

Notes and important information for ta and faculty meetings will be at the discretion of individuals
to make during or following the meetings. However any notes that are made will be compiled and
put into the google drive folder so that any team member who was absent from the meeting will be
able to see what they missed. Meeting minutes will be kept by the attendees of the meetings in their
notes sheet and the time will be recorded once notes are compiled into the single notes document
for said meeting date on google drive.

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team meetings:

All team members are expected to attend and be on time for all meetings unless otherwise
specified. If someone is unable to attend, advance notice is preferred, but life happens and we

51

understand that advance notice isn’t always possible. Everyone is encouraged to participate in team
meetings if there’s something you want to say, but no one will be required to speak.

2. Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:

Everyone is expected to have their assigned work completed by the predetermined deadline and to
the level specified when that work was assigned. Deadlines will be determined prior to assigning
work to prevent deadlines from continually being pushed back. In the case issues arise or the
assignment requires more work than expected, the assignment will be broken up into smaller
assignments and new deadlines will be given for the smaller assignments.

3. Expected level of communication with other team members:

Everyone is expected to communicate when significant issues arise with any assigned work. Regular
communication and progress updates are highly encouraged. If someone isn’t communicating for an
extended period of time, the team will reach out and make sure that everything is going okay. This
should be done first through the discord server or through private messaging, and secondarily
through the iowa state email.

4. Expected level of commitment to team decisions and tasks:

Team members are strongly encouraged to comment on all decisions and tasks. Since roles are
being chosen by team members and responsibilities and team decisions are being made by
consensus, once a decision has been made the team should be able to fully commit to said decision.
The same can be said for tasks that team members are assigned. It is crucial that each team member
not only communicate with others about their tasks and if any help is needed, but engage with all
tasks that are assigned with their full commitment.

Leadership

1. Leadership roles for each team member (e.g., team organization, client interaction, individual
component design, testing, scrum master, database management, team website manager, main
documentor, ect.):

❖ Joshua Heroldt
➢ Team organization
➢ Client interaction

❖ Bernard Fay
➢ Database management
➢ Meeting Scribe

❖ Nolan Slimp
➢ Scrum Master

❖ Asma Gesalla
➢ Backend documentor

❖ Matthew Medley
➢ Team Website Manager
➢ Frontend architecture design

52

❖ Indrajeet Roy
➢ Frontend documentor

❖ Siddharth Rana
➢ Individual component design

2. Strategies for supporting and guiding the work of all team members:

We as the team want to create a strong culture of open communication and the space where anyone
can ask questions. Even though roles are being assigned everyone should be free and able to aid
anyone else in the group if they are struggling and this is encouraged among team members.
Additionally the group will aim to use common coding practices in an effort to mirror industry
standards with regards to developing and implementing the project.

3. Strategies for recognizing the contributions of all team members:

Each team member will have their contributions recognized through weekly meeting checkups with
each group member. This will allow everyone to be on the same page with how the project is
progressing and allows each member to share their contributions to the project with everyone else.

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member brings to the team.

● Nolan and Matthew have worked on web applications and have skills in React and Angular.
● Josh has worked with real-time web applications that interact with large sets of data
● Bernie and Siddharth have worked with backend development (Spring Boot) and are

proficient in designing and implementing algorithms.
● Indrajeet has worked with the android platform and Spring framework, and has internship

experience in production android application development.

2. Strategies for encouraging and support contributions and ideas from all team members:

● After standup on Fridays, a discussion will take place to contribute new ideas and keep on
track.

● Having all projects be available for everyone to look at
● Having all research and code be in a shared location so that everyone can comment or view

it
● Creating channels for specific small groups so that if ideas are needed small group

members can collaborate with other team members
● If needed idea brainstorming sessions can be done during normal meeting times following

standup so that outside perspectives can be shared

3. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will a team
member inform the team that the team environment is obstructing their opportunity or ability to
contribute?)

● If there is a conflict between members, it will be forwarded to the team leader and
addressed in standup. There, the team will collaborate and resolve the issue.

53

● Emails or private messages can be sent to members outside of the student in question’s
small group and brought up by said outside member if the student in question is not
comfortable speaking out themselves

Goal-Setting, Planning, and Execution

1. Team goals for this semester:

● Create a project plan that will be able to be implemented fully by another team without any
communication with our initial team.

● Aim to learn and interact with new forms of coding that are more closely related to actual
industry work

● Learn how to use new api’s and technologies that we have never worked with before

2. Strategies for planning and assigning individual and team work:

● Split the team up into different small groups so that the project can be chunked up into
more manageable sections

● Having the scrum master create stories so that specific sections of the project become more
manageable

● Make work fall under one specific small group if possible, so that members of that small
group can collaborate with each other in order to used their shared skills to attempt to
solve the problem

3. Strategies for keeping on task:

● Assign small goals for groups to work on
● Rotate/decide among small groups who is best suited for what tasks

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?

Infractions will be dealt with in a tiered structure. Firstly the student in question will be contacted
by the group and a compromise will be attempted to be worked out. If this fails or if the student is
unresponsive then the next level of intervention will be to contact our TA in order to issue a
stronger warning. Finally if this fails then the professors will be contacted in order to issue a
punishment to the student in question.

2. What will your team do if the infractions continue?

If infractions become a common occurrence each infraction will be clearly documented as to leave
no doubt that the student in question has broken the rules of this document. These infractions will
be compiled and presented to the student in question along with the TA and professor being
contacted to request for aid in resolving the issue. This will only occur if infractions become a
common occurrence and the team has been unable to resolve the issues with the member in
question.

54

a) I participated in formulating the standards, roles, and procedures as stated in this contract.

b) I understand that I am obligated to abide by these terms and conditions.

c) I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) Joshua Heroldt DATE 9/19/2021

2) Nolan Slimp DATE 9/19/2021

3) Bernard Fay DATE 9/19/2021

4) Indrajeet Aditya Roy DATE 9/19/2021

5) Siddharth Rana DATE 9/19/2021

6) Matthew Medley DATE 9/19/2021

7) Asma Gesalla DATE 9/19/2021

55

